Self-generated fuzzy systems design using artificial bee colony optimization

نویسندگان

  • Hacene Habbi
  • Yassine Boudouaoui
  • Dervis Karaboga
  • Celal Ozturk
چکیده

In this paper, artificial bee colony (ABC) optimization based methodology is proposed for automatically extracting Takagi–Sugeno (TS) fuzzy systems with enhanced performance from data. The design procedure aims to find the structures and the parameters of the TS fuzzy systems simultaneously without knowing the rule number as a priori. In the proposed method, a fuzzy system is encoded into a food source with appropriate string representation so that the TS model is entirely specified. The encoded premise and consequent parameters of the fuzzy model evolve together through artificial bee colony optimization strategy simulating the global foraging behavior of honey bee swarm so that good solutions can be achieved. Simulations on benchmark modeling and tracking control problems are performed and compared with other existing methods. The experimental results indicate that the proposed ABC optimization based fuzzy systems design algorithms can successfully find accurate fuzzy models with appropriate number of rules. Moreover, the proposed approach outperforms the compared methods and can provide considerable improvements in tackling complex modeling and tracking control problems. 2014 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS

This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...

متن کامل

Design of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS

This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...

متن کامل

OPTIMIZATION OF SKELETAL STRUCTURAL USING ARTIFICIAL BEE COLONY ALGORITHM

Over the past few years, swarm intelligence based optimization techniques such as ant colony optimization and particle swarm optimization have received considerable attention from engineering researchers. These algorithms have been used in the solution of various structural optimization problems where the main goal is to minimize the weight of structures while satisfying all design requirements...

متن کامل

An Innovative Potential on Rule Optimization using Fuzzy Artificial Bee Colony

This study adapted an improved algorithm based on Artifical Bee Colony Optimization. It is not possible to justify that all the rules generated by fuzzy based apriori algorithm produce optimum result. Thus optimization of the result generated was carried out by Fuzzy Apriori algorithm using Fuzzy Artifical Bee Colony Optimization (FABCO), it's worth noting that a significant findings were revea...

متن کامل

OPTIMIZATION OF RC FRAMES BY AN IMPROVED ARTIFICIAL BEE COLONY ALGORITHM

A new meta-heuristic algorithm is proposed for optimal design of reinforced concrete (RC) frame structures subject to combinations of gravity and lateral static loads based on ACI 318-08 design code. In the present work, artificial bee colony algorithm (ABCA) is focused and an improved ABCA (IABCA) is proposed to achieve the optimization task. The total cost of the RC frames is minimized during...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 295  شماره 

صفحات  -

تاریخ انتشار 2015